
UNIVERSIDADE FEDERAL DO PARANÁ

VINÍCIUS MAURÍCIO RIBEIRO

EFFICIENT APPROXIMATIONS OF COMMON NEIGHBORS IN LARGE

NETWORKS VIA SAMPLING

CURITIBA PR

2025



VINÍCIUS MAURÍCIO RIBEIRO

EFFICIENT APPROXIMATIONS OF COMMON NEIGHBORS IN LARGE

NETWORKS VIA SAMPLING

Trabalho apresentado como requisito parcial à con-
clusão do Curso de Bacharelado em Ciência da Com-
putação, Setor de Ciências Exatas, da Universidade
Federal do Paraná.

Área de concentração: Computação.

Orientador: André Luís Vignatti.

CURITIBA PR

2025



RESUMO

Vizinhos Comuns (CN) é uma quantidade fundamental na análise de redes e mineração de
dados, servindo de base para várias métricas e medidas de similaridade. Neste trabalho,
abordamos o problema de contar aproximadamente o número de vizinhos comuns para
todos os pares de vértices em um grafo. Como o cálculo exato aumenta com o tamanho do
grafo, ele se torna computacionalmente proibitivo para redes de larga escala. Para superar
essa limitação, propomos algoritmos eficientes baseados em amostragem que aproximam
CN com fortes garantias probabilísticas. Com base nos resultados da teoria da dimensão
VC, nossos algoritmos obtêm tamanhos de amostra que são independentes do tamanho do
grafo e dependem apenas de seu grau máximo, oferecendo uma solução prática e escalável
para análise de redes de larga escala. Introduzimos seis algoritmos, categorizados por
normalização (normalizado ou não normalizado) e método de amostragem (baseado em
vértice, aresta e wedge). Três algoritmos calculam CN normalizado com garantias de
erro aditivo, enquanto os outros lidam com CN não normalizado com garantias de erro
multiplicativo. Resultados experimentais demonstram que nossos algoritmos alcançam
acelerações substanciais em relação aos métodos exatos, mantendo alta precisão.

Palavras-chave: Análise de redes sociais. Vizinhos Comuns. Algoritmo aleatorizado.



ABSTRACT

Common Neighbors (CN) is a fundamental quantity in network analysis and data mining,
underpinning various metrics and similarity measures. In this paper, we address the
problem of approximately counting the number of common neighbors for all vertex pairs
in a graph. Since exact computation scales with the size of the graph, it becomes
computationally prohibitive for large-scale networks. To overcome this limitation, we
propose efficient sampling-based algorithms that approximate CN with strong probabilistic
guarantees. Building on results from VC-dimension theory, our algorithms obtain sample
sizes that are independent of the size of the graph and depend only on its maximum degree,
offering a practical and scalable solution for large-scale network analysis. We introduce
six algorithms, categorized by normalization (normalized or unnormalized) and sampling
method (vertex-, edge- and wedge-based). Three algorithms compute normalized CN with
additive error guarantees, while the others handle unnormalized CN with multiplicative
error guarantees. Experimental results demonstrate that our algorithms achieve substantial
speedups over exact methods while maintaining high accuracy.

Keywords: Social network analysis. Common Neighbors. Randomized algorithm.



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 OUR RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 GRAPH THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 VC DIMENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 SAMPLE COMPLEXITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 SHATTER POTENTIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 NORMALIZED ESTIMATIVES . . . . . . . . . . . . . . . . . . . . . . 11
3.1 ESTIMATION VIA VERTEX NORMALIZATION . . . . . . . . . . . . . . 11
3.1.1 Range Space and VC Dimension Results . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 ESTIMATION VIA EDGE NORMALIZATION . . . . . . . . . . . . . . . . 13
3.2.1 Range Space and VC Dimension Results . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 ESTIMATION VIA WEDGE NORMALIZATION. . . . . . . . . . . . . . . 15
3.3.1 Range Space and VC Dimension Results . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Wedge Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 COMMON NEIGHBORS ESTIMATION . . . . . . . . . . . . . . . . 18
4.1 DENORMALIZATION STRATEGY . . . . . . . . . . . . . . . . . . . . . . 18
4.2 RUNNING TIME VS ESTIMATION QUALITY TRADE-OFF . . . . . . . 20
5 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . 23
5.1 NORMALIZED CN ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 CN ESTIMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 INFLUENCE OF THE THRESHOLD η . . . . . . . . . . . . . . . . . . . . 30
6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



5

1 INTRODUCTION

The common neighbors (CN) of two vertices in a graph is the size of the intersection of
their neighborhoods i.e., |N(u) ∩N(v)|, where N(u) and N(v) are the neighborhoods of
vertices u and v, respectively. It plays a central role in determining several metrics and
similarity measures used in network analysis, as discussed in reference textbooks such as
(Easley and Kleinberg, 2010; Newman, 2010; Menczer et al., 2020) (see Section 2 for key
definitions and results used throughout the paper).

Kleinberg and Easley (Easley and Kleinberg, 2010) propose several metrics that use
the concept of common neighbors. The neighborhood overlap metric (Easley and Kleinberg,
2010, Section 3.3) is defined as the ratio of common neighbors to the neighborhood union,
while the embeddedness metric (Easley and Kleinberg, 2010, Section 3.5) is simply the
number of common neighbors of two adjacent vertices. In another context (Easley and
Kleinberg, 2010, Section 4.4), the neighborhood overlap is used to assess similarity within
bipartite affiliation networks. Menczer, Fortunato, and Davis (Menczer et al., 2020, Section
6.2) coined the term “structural equivalence”, which essentially duplicates the definition
of the neighborhood overlap metric from Kleinberg and Easley. Newman (Newman, 2010)
introduces an equation that calculates the number of paths of length two between vertices
u and v (Newman, 2010, Section 6.10), and this value is precisely the number of common
neighbors. Additionally, in the study of similarity, Newman introduces the concept of
structural equivalence (Newman, 2010, Section 7.12), which also represents CN. A widely
used metric is cosine similarity (Newman, 2010, Section 7.2.1), which, in the network
context, is computed by dividing the number of common neighbors of two vertices by
the geometric mean of their degrees. Another measure of structural equivalence is the
so-called Euclidean distance (not to be confused with the more common use of this term),
which uses CN in its calculation (Newman, 2010, Section 7.12.3).

1.1 OUR RESULTS

We present sampling-based algorithms that use notions from VC-dimension theory to derive
sample sizes independent of the graph’s size, depending instead on its maximum degree.
Six algorithms are presented, categorized by normalization (normalized or unnormalized)
and sampling method (vertex-, edge- or wedge-based).

The first three algorithms compute three normalized variants of CN: vertex-
normalized, edge-normalized and wedge-normalized common neighbors. Normalization
is useful since it provides values relative to the graph, which can be more informative
than absolute measures. Specifically, vertex normalization highlights the proportion of
vertices involved in the neighborhood (e.g., “50% of the vertices of the graph lie in the
common neighborhood of u and v”), while edge and wedge normalizations emphasize the
participation of edges and wedges, respectively. These algorithms guarantee that, for all
vertex pairs, the estimated values are within an additive error ϵ of the true values with
probability at least 1− δ.

Next, we present three algorithms for the unnormalized case. These algorithms
are constructed by denormalizing the vertex-, edge- and wedge-normalized algorithms
described earlier. These unnormalized algorithms guarantee a multiplicative error ϵ with



6

probability at least 1−δ, provided the normalized CN exceeds a threshold η. This threshold
provides robustness for small CNs, where multiplicative error bounds become impractical.

Both vertex-, edge- and wedge-based strategies are presented because neither
consistently outperforms the other; instead, there is a trade-off between estimator quality
and running time. On the one hand, vertex sampling has the higher running time of
O(∆2 lg ∆ + |E|), followed by edge sampling with O(∆ lg ∆ + |E|) and wedge sampling
with running time of O(|E|), where ∆ is the maximum degree of the graph. On the
other hand, we show that the vertex-based sampling estimator is generally more efficient,
followed by the edge- and wedge-sampling strategies, respectively.

Our experiments are divided into three parts: an evaluation of the normalized
versions, an analysis of the denormalized versions, and an empirical study of the parameter
η. Results show that all algorithms achieve significantly faster running times than exact
methods, while meeting theoretical quality guarantees.

To the best of our knowledge, these are the first algorithms to compute CN for all
pairs with sample sizes independent of the graph size.

1.2 RELATED WORK

The current state-of-the-art implementation for computing CN for all pairs is by An et al.
(An et al., 2019). This algorithm runs in O(∆|E|) and serves as a basis for comparison for
our probabilistic algorithms. Its strategy primarily focuses on counting all the wedges in the
graph (further details can be found in Section 5). Other strategies for computing CN can
also be found in the literature. Besta et al. (Besta et al., 2021) suggest that many graph
mining algorithms can be largely expressed using simple set operations, such as intersection
and union, on sets of vertices or edges. In a subsequent 2022 work, Besta et al. (Besta
et al., 2022) note that graphs can be effectively represented as collections of vertex and
edge sets. To efficiently encode these sets, they use probabilistic set representations such
as Bloom filters (Bloom, 1970). They further show that many graph algorithm operations
can be expressed using set intersection cardinality, |X ∩ Y |, and design estimators |X̂ ∩ Y |
that approximate |X ∩ Y |. Similar to the estimators proposed in our work, their estimator
also incorporates error and confidence parameters, suggesting a potential generalization of
our work. However, their work focuses on efficiently computing a single intersection, while
our results address multiple intersections. Our approach is more efficient, for example,
when computing a number of intersections proportional to or exceeding the maximum
degree.

Sample complexity techniques based on the Vapnik-Chervonenkis (VC) dimen-
sion (Vapnik and Chervonenkis, 1971; Shalev-Shwartz and Ben-David, 2014), originating
from computational learning theory, have recently found applications in graph algorithms
(Riondato and Kornaropoulos, 2014, 2016; de Lima et al., 2020, 2022). Notably, Riondato
and Kornaropoulos (Riondato and Kornaropoulos, 2014, 2016) pioneered this approach,
developing a fast algorithm for computing betweenness centrality. Building on this work,
Lima et al. (de Lima et al., 2020) addressed percolation centrality, a generalization of
betweenness centrality. They further applied these techniques to the computation of
clustering coefficients, a key problem in graph mining (de Lima et al., 2022). Combining
VC dimension with Rademacher averaging and progressive sampling offers further poten-
tial improvements, as demonstrated in several studies of previously addressed problems
(Riondato and Upfal, 2018; Pellegrina and Vandin, 2023; Cousins et al., 2023; de Lima
et al., 2022).



7

2 PRELIMINARIES

This section presents key definitions and results used throughout the paper.

2.1 GRAPH THEORY

Let G = (V, E) be an undirected graph. For each v ∈ V , let δv be the degree of vertex v,
and let ∆ = maxv∈V δv be the maximum degree of G. The neighborhood N(v) of a vertex
v is the set of all vertices adjacent to v in G. A wedge is a path of length two, i.e., a
sequence of three vertices u, v, t ∈ V such that {u, v}, {v, t} ∈ E. We do not differentiate
the wedges by the order in which we traverse the path, i.e., (u, v, t) = (t, v, u). W is the
set of all wedges in G.
Definition 1. The common neighbors (CN) metric c(u, v) of two vertices u and v is the
size of the intersection of their neighborhoods, i.e., c(u, v) = |N(u) ∩N(v)|.
Definition 2. The vertex-normalized CN cvertex(u, v) of two vertices u and v is given by
cvertex(u, v) = c(u,v)

|V | .

Definition 3. The edge-normalized CN cedge(u, v) of two vertices u and v is given by
cedge(u, v) = 2c(u,v)

|E| .

Definition 4. The wedge-normalized CN cwedge(u, v) of two vertices u and v is given by
cwedge(u, v) = c(u,v)

|W | .

In Definition 3, the multiplicative factor of two accounts for the two edges (one
from u and one from v) associated with each common neighbor in undirected graphs. This
factor, while not strictly required, simplifies subsequent calculations.

The following lemmas provide a way to count the number of wedges in a graph.
Proposition 1. Let G = (V, E) be a graph. The number of wedges in G is given by

|W | =
∑

{u,v}∈E

δu + δv − 2
2 .

Proof. An edge {u, v} ∈ E is part of a wedge if u is the center (e.g., (x, u, v)) or v is the
center (e.g., (u, v, y)). If u is the center, there are δu − 1 choices for x (excluding v). If
v is the center, there are δv − 1 choices for y (excluding u). Therefore, the number of
wedges in G that contain {u, v} is (δu − 1) + (δv − 1) = δu + δv − 2. When summing the
contribution of all edges, each wedge is counted twice (once for each edge in it), so we
divide the total by 2.
Proposition 2. Let G = (V, E) be a graph. The number of wedges in G is given by

|W | =
∑
v∈V

(
δv

2

)
.

Proof. Consider a vertex v ∈ V . By choosing two neighbors u and w from N(v), we can
form a wedge (u, v, w). The number of ways to choose two vertices from N(v) is given by(

δv

2

)
, so there are

(
δv

2

)
wedges centered at v. Summing this over all vertices in V gives us

the total number of wedges in the graph.



8

2.2 VC DIMENSION

Let Ω be a sample space, and E = {E1, E2, ..., En} a set of events (subsets) over Ω.
Consider the task of approximating the probability of each event pEi

= Pr(Ei) by sampling
from Ω. Let S = (s1, s2, . . . , sm) ∈ Ωm be a sample of size m. We estimate pEi

using the
relative frequency of Ei, i.e.,

p̂Ei
= 1

m

m∑
j=1

1Ei
(sj),

where 1Ei
(sj) is an indicator function that is equal to 1 if sj occurs in Ei (i.e., sj ∈ Ei),

and 0 otherwise. We are interested in determining the sample size m such that

Pr (∀i, |p̂Ei
− pEi

| ≤ ϵ) ≥ 1− δ, (2.1)

where ϵ is the margin of error and 1− δ is the confidence level.
Suppose we have individual bounds Pr(|p̂Ei

−pEi
| ≤ ϵ) for each event Ei, obtained

using well-known inequalities like Chernoff or Hoeffding bounds. We can combine these
individual bounds to obtain our desired global bound using the union bound. The downside
with this approach is that the union bound results in a sample size dependent on |E|. The
Vapnik-Chervonenkis (VC) dimension offers a more refined method, bounding the sample
size based on the “complexity” of the set of events E , rather than its cardinality.

A range space (X,R) consists of a set X and a family R of subsets of X. The
projection of A ⊆ X on R is PR(A) = {A ∩ R : R ∈ R}. A set A is shattered by R if
PR(A) = 2A.

Definition 5. The VC dimension of a range space (X,R), denoted dVC(R), is the size of
the largest set A ⊆ X shattered by R.

For an in-depth explanation of VC dimension, see Shalev-Schwartz and Ben-David
(Shalev-Shwartz and Ben-David, 2014), and Mitzenmacher and Upfal (Mitzenmacher and
Upfal, 2017).

2.3 SAMPLE COMPLEXITY

We now present the definitions and theorems that will be used to bound the sample
size necessary to obtain confidence intervals for the probability of each event of interest
using the VC dimension. It is possible to derive bounds that ensure approximations with
absolute or relative error.

Definition 6. Let (X,R) be a range space with a probability distribution π over X,
pR = Prπ(R) the probability of a range R ∈ R, and p̂R the relative frequency of R based
on a sample S. For ϵ ∈ (0, 1), S is an (absolute) ϵ-approximation to (X,R) if

|p̂R − pR| ≤ ϵ, ∀R ∈ R.

Theorem 1 (see (Har-Peled and Sharir, 2011), Thm. 2.12). Let (X,R) be a range
space with VC dimension dVC(R) ≤ d, and let π be a probability distribution on X. For
ϵ, δ ∈ (0, 1), and a sample S of size m drawn from π, with probability at least 1− δ, S is
an ϵ-approximation to (X,R) if

m ≥ b

ϵ2

(
d + ln 1

δ

)
,



9

where b is a positive constant.

Definition 7 (see (Har-Peled and Sharir, 2011)). Let (X,R) be a range space with a
probability distribution π over X, pR = Prπ(R) the probability of a range R ∈ R, and
p̂R the relative frequency of R based on a sample S. For ϵ ∈ (0, 1), S is a relative
(η, ϵ)-approximation to (X,R) if, for all R ∈ R,

|p̂R − pR| ≤ ϵ max{pR, η}.

Introducing the new parameter η for the relative approximation might seem
unintuitive compared to the absolute ϵ-approximation. As explained by Har-Peled and
Sharir (Har-Peled and Sharir, 2011), as pR approaches zero, the precision of the relative
approximation must increase. When pR = 0, the approximation would need to be exact,
which is impossible to guarantee, unless S = X. The parameter η addresses this issue
by explicitly setting the approximation precision for events with small probability. We
therefore refer to η as the threshold parameter.
Theorem 2 (see (Li et al., 2001), Thm. 5). Let (X,R) be a range space with VC dimension
dVC(R) ≤ d, and let π be a probability distribution on X. For η, ϵ, δ ∈ (0, 1), and a sample
S of size m drawn from π, with probability at least 1−δ, S is a relative (η, ϵ)-approximation
to (X,R) if

m ≥ b′

ϵ2η

(
d ln 1

η
+ ln 1

δ

)
,

where b′ is a positive constant.

The values used for the constants b and b′ are discussed in Section 5.

2.4 SHATTER POTENTIAL

Suppose we have two range spaces, (X,R1) and (X,R2), where dVC(R1) ≤ M and
dVC(R2) ≤ N , with M > N . Although we cannot conclude that R1 is inherently more
complex than R2 (i.e., dVC(R1) > dVC(R2) does not hold by default), R1 possesses a
higher potential for complexity than R2. To formalize this notion of potential complexity,
we introduce the concept of the shatter potential of a range space (X,R).
Definition 8. The shatter potential of an element x ∈ X with respect to a range space
(X,R) is the number of sets in R that contain x, i.e., σR(x) = |{R ∈ R | x ∈ R}|.

Definition 9. The shatter potential of a range space (X,R) is the maximum shatter
potential of any element in X, i.e., σ(R) = maxx∈X σR(x).

While it may not be immediately clear whether Definition 9 truly captures the
notion of potential complexity, Theorem 3 provides a theoretical justification for this
definition.
Theorem 3. Let (X,R) be a range space. Then, dVC(R) ≤ ⌊lg(σ(R))⌋+ 1.

Proof. Let A be the largest set shattered by R, so dVC(R) = |A|. The projection PR(A)
is equal to the power set of A, and thus |PR(A)| = 2|A| = 2dVC(R). Fix an arbitrary
element a ∈ A. Each subset of A either contains a or does not, so a appears in exactly
half of the subsets in 2A. This implies a appears in 2|A|−1 = 2dVC(R)−1 subsets. Thus,
σR(a) = 2dVC(R)−1, which implies σ(R) ≥ 2dVC(R)−1. The result follows by isolating
dVC(R).



10

Given σ(R1) = M > σ(R2) = N , we have that dVC(R1) ≤ ⌊lg M⌋ + 1 and
dVC(R2) ≤ ⌊lg N⌋+ 1. Since M > N , it follows that ⌊lg M⌋+ 1 > ⌊lg N⌋+ 1, implying
that R1 exhibits a higher potential complexity than R2.

It is important to note that the concept of shatter potential is not new; it has
been used implicitly in previous research (de Lima et al., 2022, Proof of Theorem 2), (de
Lima et al., 2022, Proof of Theorem 5), and (Riondato and Kornaropoulos, 2014, Proof of
Lemma 1). We simply formalized it and gave it a name to allow for more effective use in
our analysis.

The shatter potential is a particularly useful tool for quickly determining an upper
bound for the VC dimension. In conjunction with Theorems 1 and 2, we can determine a
sample size that depends solely on the complexity of the event set, rather than its size.



11

3 NORMALIZED ESTIMATIVES

Our primary approach to estimate CN is to denormalize either vertex-, edge- or wedge-
normalized CN. To achieve this, we first present algorithms for the normalized CN in
Sections 3.1, 3.2 and 3.3, respectively. In Section 4, we then demonstrate how to estimate
c(u, v) from cvertex(u, v), cedge(u, v) and cwedge(u, v).

3.1 ESTIMATION VIA VERTEX NORMALIZATION

In this section, we present our strategy for estimating the vertex-normalized CN cvertex(u, v)
for all u, v ∈ V .

3.1.1 Range Space and VC Dimension Results

Let the set of vertices V be our sample space, and Evertex(u, v) the event of sampling a
vertex in N(u) ∩N(v), that is, Evertex(u, v) = N(u) ∩N(v). Then,

Pr
(
Evertex(u, v)

)
= |N(u) ∩N(v)|

|V |
= cvertex(u, v),

where the last equation follows from Definition 2. Thus, by sampling vertices from the
graph, we approximate cvertex(u, v) by estimating the probability of Evertex(u, v).

Let (V,Rvertex) be a range space, where Rvertex is the set of all events Evertex(u, v)
for each pair of vertices u, v ∈ V , i.e.,

Rvertex =
{
Evertex(u, v) | u, v ∈ V

}
.

Theorem 4 bounds the VC dimension of (V,Rvertex).

Theorem 4. The range space (V,Rvertex) has dVC(Rvertex) ≤ ⌊2 lg(∆)⌋.

Proof. To derive the bound for the VC dimension, we examine the shatter potential of
(V,Rvertex). Let v ∈ V be an arbitrary vertex, and N(v) = {n1, n2, . . . , nδv} the neighbors
of v. Since v ∈ N(ni)∩N(nj) for all pairs ni, nj ∈ N(v), vertex v is included in

(
δv

2

)
events

Evertex(ni, nj), yielding σRvertex(v) =
(

δv

2

)
. The shatter potential of (V,Rvertex) is thus

σ
(
Rvertex

)
= max

v∈V

(
δv

2

)
=
(

∆
2

)
.

By Theorem 3,

dVC(Rvertex) ≤
⌊
lg
(

∆
2

)⌋
+ 1 ≤

⌊
lg
(

∆2

2

)⌋
+ 1 = ⌊2 lg(∆)⌋.



12

3.1.2 Algorithm

The algorithm involves sampling vertices from the graph to estimate cvertex(u, v) for each
pair u, v ∈ V . Let S = (s1, s2, . . . , sm) ∈ Ωm be a i.i.d. sample of size m, where each si is
a vertex in V . We use the relative frequency of Evertex(u, v) as an estimator for cvertex(u, v),
i.e.,

ĉvertex(u, v) = 1
m

m∑
i=1

1Evertex(u,v)(si), (3.1)

where 1Evertex(u,v)(si) is an indicator function that is equal to 1 if vertex si ∈ N(u) ∩N(v),
and 0 otherwise. Note that E [ĉvertex(u, v)] = cvertex(u, v), i.e., ĉvertex(u, v) is an unbiased
estimator for cvertex(u, v).

The algorithm takes as input a graph G = (V, E), and the accuracy and confidence
parameters 0 < ϵ, δ < 1, assumed to be constants. It outputs the estimate ĉvertex(u, v)
for all pairs u, v ∈ V . Algorithm 1 presents the pseudo-code of the vertex-normalized
CN algorithm. The value for the constant b used in the evaluation of the sample size is
discussed further in Section 5.

Algorithm 1: VertexNormalizedCN(G, ε, δ)
input : Graph G = (V, E), accuracy ϵ, confidence 1− δ
output : Estimates ĉvertex(u, v) for all pairs u, v ∈ V
Initialize all ĉvertex[u, v] to zero
∆← getMaximumDegree(G)
m←

⌈
b
ϵ2

(
⌊2 lg(∆)⌋+ ln 1

δ

)⌉
for i← 1 to m do

s← sampleVertex(G)
forall pairs ni, nj ∈ N(s) do

ĉvertex[ni, nj]← ĉvertex[ni, nj] + 1
m

return ĉvertex[ni, nj] for all pairs u, v ∈ V

Theorem 5. Given a graph G = (V, E), accuracy ϵ, and confidence 1− δ, the estimates
ĉvertex(u, v) obtained by Algorithm 1 satisfy

Pr
(
∀u, v ∈ V, |cvertex(u, v)− ĉvertex(u, v)| ≤ ϵ

)
≥ 1− δ.

Proof. Note that the algorithm returns estimations that replicate the behavior of Equation
3.1. By Theorem 4, the VC dimension is at most ⌊2 lg(∆)⌋. Together with Theorem 1,
the sample with size

m =
⌈

b

ϵ2

(
⌊2 lg(∆)⌋+ ln 1

δ

)⌉
,

is an ϵ-approximation to (V,Rvertex) with confidence 1− δ. Thus, for all u, v ∈ V , we have
|ĉvertex(u, v)− cvertex(u, v)| ≤ ϵ, with probability at least 1− δ.

Theorem 6. Algorithm 1 has running time O(∆2 lg ∆ + |E|).

Proof. To avoid explicitly iterating through all (u, v) pairs and setting them to zero, we
can use a direct addressing table indexed by (u, v). This table is used during execution as



13

follows: if the value at index (u, v) is null, it is set to zero; otherwise, it is incremented
according to the algorithm.

Computing ∆ in the preprocessing phase requires O(|E|) time. For each sampled
vertex, O(∆2) estimates are updated. As we sample m vertices in total, the time complexity
associated with these updates is O(m ·∆2) and since m = O(log ∆), the result follows.

3.2 ESTIMATION VIA EDGE NORMALIZATION

In this section, we present our strategy for estimating the edge-normalized CN cedge(u, v)
for all u, v ∈ V .

3.2.1 Range Space and VC Dimension Results

Let the set of edges E be our sample space. For each pair of vertices u, v ∈ V , we define an
event Eedge(u, v). This event is a set containing the edges {t, u} and {t, v} for all vertices
t that are common neighbors of both u and v. Formally,

Eedge(u, v) =
{
{u, t}, {v, t} | t ∈ N(u) ∩N(v)

}
.

Figure 3.1 presents an example of the events.

u v

t t′ t′′

Figure 3.1: An example of the event Eedge(u, v). Here, u and v have three neighbors in common, t, t′ and
t′′. Therefore, the event is composed of the six edges depicted in the figure.

The probability of sampling an edge in Eedge(u, v) is then

Pr (Eedge(u, v)) = Pr
({
{u, t}, {v, t} | t ∈ N(u) ∩N(v)

})
= Pr

({
{u, t} | t ∈ N(u) ∩N(v)

})
+ Pr

({
{v, t} | t ∈ N(u) ∩N(v)

})
=

∑
t∈N(u)∩N(v)

Pr({u, t}) +
∑

t∈N(v)∩N(u)
Pr({v, t})

= |N(u) ∩N(v)|
|E|

+ |N(v) ∩N(u)|
|E|

= cedge(u, v),

where the first equation follows from the definition of the event, the second and third from
the fact that the events are disjoint, and the last from Definition 3. Thus, by sampling
edges, we approximate cedge(u, v) by estimating the probability of Eedge(u, v).

Let (E,Redge) be a range space, where Redge is the set of all events Eedge(u, v) for
each pair of vertices u, v ∈ V , i.e.,

Redge =
{
Eedge(u, v) | u, v ∈ V

}
.

Theorem 7 bounds the VC dimension of (E,Redge).

Theorem 7. The range space (E,Redge) has dVC(Redge) ≤ ⌊lg ∆⌋+ 2.



14

Proof. Consider an arbitrary edge e = {u, v} ∈ E. Let N ′(u) = {u1, u2, . . . , uδu} \ {v}
and N ′(v) = {v1, v2, . . . , vδv} \ {u} denote the set of neighbors of u and v respectively,
excluding the opposite vertex. Observe that e ∈ Eedge(ui, v) ∪ Eedge(vi, u) for all ui ∈
N ′(u) and vi ∈ N ′(v). Consequently, e belongs to (δu − 1) + (δv − 1) events, yielding
σRedge(e) = (δu − 1) + (δv − 1). Thus, the shatter potential of

(
E,Redge

)
is

σ
(
Redge

)
= max

{u,v}∈E
(δu + δv − 2) ≤ 2∆− 2.

By Theorem 3,
dVC

(
Redge

)
≤ ⌊lg(2∆− 2)⌋+ 1 ≤ ⌊lg ∆⌋+ 2.

3.2.2 Algorithm

Given a collection of i.i.d. samples (edges) S = (s1, s2, . . . , sm) ∈ Em, we use the relative
frequency of Eedge(u, v) as an estimator for Pr(Eedge(u, v)) = cedge(u, v), i.e.,

ĉedge(u, v) = 1
m

m∑
i=1

1Eedge(u,v)(si) (3.2)

where 1Eedge(u,v)(si) is an indicator function that is equal to 1 if edge si ∈ Eedge(u, v), and
0 otherwise. Also, note that ĉedge(u, v) is an unbiased estimator.

The input of the algorithm takes is a graph G = (V, E) and parameters 0 < ϵ, δ < 1.
It outputs the estimate ĉedge(u, v) for all pairs u, v ∈ V . For each sampled edge {u, v}, we
update all estimates ĉedge(ui, v) and ĉedge(vi, u) for each neighbor u′ ∈ N(u) \ {v} and v′ ∈
N(v)\{u}. Consequently, the computational complexity per sample is O(δu + δv) = O(∆),
which, notably, is asymptotically lower than that required for the vertex-normalized CN.
Algorithm 2 presents the pseudo-code of the edge-normalized CN algorithm. The value for
the constant b used in the evaluation of the sample size is discussed further in Section 5.

Algorithm 2: EdgeNormalizedCN(G, ε, δ)
input : Graph G = (V, E), accuracy ϵ, confidence 1− δ
output : Estimates ĉedge(u, v) for all pairs of vertices u, v ∈ V
Initialize all ĉedge[u, v] to zero
∆← getMaximumDegree(G)
m←

⌈
b
ϵ2

(
⌊lg ∆⌋+ 2 + ln

(
1
δ

))⌉
for i← 1 to m do
{u, v} ← sampleEdge(G)
for each u′ ∈ N(u) \ {v} do

ĉedge[u′, v]← ĉedge[u′, v] + 1
m

for each v′ ∈ N(v) \ {u} do
ĉedge[v′, u]← ĉedge[v′, u] + 1

m

return ĉedge[u, v] for all pairs of vertices u, v ∈ V

The proof of Theorem 8 is analogous to Theorem 5, using Theorems 1 and 7 to
derive the number of samples required.



15

Theorem 8. Given a graph G = (V, E), accuracy ϵ, and confidence 1− δ, the estimates
ĉedge(u, v) obtained by Algorithm 2 satisfy

Pr (∀u, v ∈ V, |cedge(u, v)− ĉedge(u, v)| ≤ ϵ) ≥ 1− δ.

Theorem 9. Algorithm 2 has running time O(∆ lg ∆ + |E|).

3.3 ESTIMATION VIA WEDGE NORMALIZATION

In this section, we present our strategy for estimating the wedge-normalized CN cwedge(u, v)
for all u, v ∈ V .

3.3.1 Range Space and VC Dimension Results

Let |W | be our sample space, and Ewedge(u, v) the event of sampling a wedge in N(u)∩N(v),
that is, Ewedge(u, v) = {(u, x, v) | x ∈ N(u) ∩N(v)}. Then,

Pr
(
Ewedge(u, v)

)
= |N(u) ∩N(v)|

|W |
= cwedge(u, v).

We can now approximate cwedge(u, v) by estimating the probability of Ewedge(u, v).
Let (W,Rwedge) be a range space, where Rwedge is the set of all events Ewedge(u, v)

for each pair of vertices u, v ∈ V , i.e.,

Rwedge =
{
Ewedge(u, v) | u, v ∈ V

}
.

Theorem 10. The VC dimension of (W,Rwedge) is dVC(Rwedge) = 1 if |W | ≥ 1, and
dVC(Rwedge) = 0 otherwise.

Proof. If |W | = 0, then the range space is empty, and its VC dimension is 0. For |W | ≥ 1,
consider an arbitrary wedge (u, x, v). The set {(u, x, v)} is shattered by Rwedge, since
(u, x, v) ∈ Ewedge(u, v) and (u, x, v) /∈ Ewedge(u, x). Therefore, dVC(Rwedge) ≥ 1. On the
other hand, a wedge is linked to a single specific common neighborhood, which implies that
the intersection between two events Ewedge(u, v) and Ewedge(u′, v′) is always empty. Thus,
Rwedge cannot shatter sets of size 2 or greater. Therefore, dVC(Rwedge) ≤ 1. Combining
both inequalities, we conclude that dVC(Rwedge) = 1.

3.3.2 Algorithm

Let S = (s1, s2, . . . , sm) ∈ W m be a i.i.d. sample of size m, where each si is a wedge in W .
We use the relative frequency of Ewedge(u, v) as an estimator for cwedge(u, v), i.e.,

ĉwedge(u, v) = 1
m

m∑
i=1

1Ewedge(u,v)(si), (3.3)

where 1Ewedge(u,v)(si) is an indicator function that is equal to 1 if wedge si ∈ N(u) ∩N(v),
and 0 otherwise. Note that E [ĉwedge(u, v)] = cwedge(u, v), i.e., ĉwedge(u, v) is an unbiased
estimator for cwedge(u, v).

Since the VC dimension does not depend on ∆, it is not necessary to call get-
MaximumDegree (as done by Algorithms 1 and 2), saving some preprocessing time.



16

Also, because each wedge corresponds to a one count of the neighborhood, for each sampled
wedge u, w, v we update only the estimate ĉwedge(u, v), which reduces the time complexity
per sample to O(1). Algorithm 3 presents the pseudo-code of the wedge-normalized CN
algorithm. The value for the constant b used in the evaluation of the sample size is
discussed further in Section 5.

Algorithm 3: WedgeNormalizedCN(G, ε, δ)
input : Graph G = (V, E), accuracy ϵ, confidence 1− δ
output : Estimates ĉwedge(u, v) for all pairs of vertices u, v ∈ V
Initialize all ĉwedge[u, v] to zero
Precompute alias table for efficient wedge sampling
m←

⌈
b
ϵ2

(
1 + ln

(
1
δ

))⌉
for i← 1 to m do

u, w, v ← sampleWedge(G)
ĉwedge[u, v]← ĉwedge[u, v] + 1

m
return ĉwedge[u, v] for all pairs of vertices u, v ∈ V

Theorem 11. Given a graph G = (V, E), accuracy ϵ, and confidence 1− δ, the estimates
ĉwedge(u, v) obtained by Algorithm 3 satisfy

Pr (∀u, v ∈ V, |cwedge(u, v)− ĉwedge(u, v)| ≤ ϵ) ≥ 1− δ.

The proof of Theorem 11 is analogous to Theorem 5.
Now we state the time complexity of Algorithm 3. The details of the running

time of the sampling algorithm will be discussed in the next session.

Theorem 12. Algorithm 3 has running time O(|E|).

Proof. The time complexity of Algorithm 3 is dominated by the time complexity of the
initialization of the alias table, which is O(|E|), as shown by Theorem 14. Because it takes
O(∆) time to sample a wedge (again, as shown by Theorem 14), the time complexity of
the loop is O(m∆), where m is the number of samples. Since m is a constant, the overall
time is O(|E|) +O(∆) = O(|E|).

3.3.3 Wedge Sampling

We now present a procedure to uniformly sample a wedge from the graph. Let E∗ =
{(u, v), (v, u) | {u, v} ∈ E} be the set of 2|E| ordered pairs induced by the edges of the
graph. For each pair (u, v), define pu,v = δv−1

2|W | as the probability of sample a pair from E∗.
Algorithm 4 describes how to sample a wedge from the graph.

In order to define the values of pu,v, we need to know |W |. Proposition 1 provides
a way to compute |W | in O(|E|) time.

Theorems 13 and 14 states the correctness and time complexity of Algorithm 4,
respectively.

Theorem 13. Algorithm 3 selects a wedge uniformly at random from W .

Proof. Fix a wedge (u, x, v). In the first step of the algorithm, the probability of sampling
the ordered pair (u, x) is Pr((u, x)) = pu,x = δx−1

2|W | . Conditioned on sampling the pair (u, x),



17

Algorithm 4: SampleWedge(G)
input : Graph G = (V, E)
output : A wedge uniformly sampled from G
Let E∗ = {(u, v), (v, u) | {u, v} ∈ E} be the set of 2|E| ordered pairs induced
by the edges of G

Let pu,v = δv−1
2|W | be the probability of sampling the ordered pair (u, v)

1. Sample an ordered pair (u, w) from E∗ with probability pu,w

2. Sample a vertex v from N(w) \ u
3. Return the wedge u, w, v

the probability of sampling v (thus forming (u, x, v)) is Pr(v | (u, x)) = 1
|N(x)\u| = 1

δx−1 .
Alternatively, (u, x, v) can be formed by first sampling the pair (v, x) and then sampling
u. The probability of sampling the wedge (u, x, v) is then

Pr((u, x, v)) = Pr((u, x)) · Pr(v | (u, x)) + Pr((v, x)) · Pr(u | (v, x))

= δx − 1
2|W | ·

1
δx − 1 + δx − 1

2|W | ·
1

δx − 1 = 1
|W |

.

Therefore, the algorithm samples a wedge uniformly at random from W . Finally,
observe that pu,v is a valid probability distribution, as

∑
(s,t)∈E∗

ps,t =
∑

{s,t}∈E

ps,t + pt,s =
∑

{s,t}∈E

δt − 1
2|W | + δs − 1

2|W | =
∑

{s,t}∈E

δs + δt − 2
2|W | = 1.

The last equality follows from Proposition 1.

Theorem 14. Algorithm 4 requires O(|E|) preprocessing time and samples a wedge in
O(∆) time.

Proof. To define the values of pe, we need to compute |W |. This can be done in O(|E|)
time using Proposition 1. To sample a pair (u, v) with probability pu,v, we can use the
Alias method (Walker, 1974), which takes O(|E|) time to preprocess the internal table
with 2|E| pairs and O(1) time to sample a pair. Sampling of a vertex from N(v) \ u takes
O(∆) time, as we iterate through the neighbors of w and choose one vertex randomly.



18

4 COMMON NEIGHBORS ESTIMATION

In this section, we show how the normalized versions can be used to obtain c(u, v). First,
in Section 4.1, we explain the necessity of using a (η, ϵ)-approximation (see Definition 7)
and describe our denormalization strategy. We then present the algorithms and theorems
concerning their approximation guarantees and running times. Subsequently, in Section
4.2, we show that the quality of the estimators employed by the sampling strategies can
affect the resulting approximation. This gives rise to a trade-off between running time
and estimator quality, which must be taken into account when selecting a strategy.

4.1 DENORMALIZATION STRATEGY

Consider the vertex-normalized estimator ĉvertex(u, v) in Equation 3.1. Multiplying it by
|V | provides an estimator ĉ(u, v) for c(u, v), i.e.,

ĉ(u, v) = |V | · ĉvertex(u, v).

Since ĉvertex(u, v) is an unbiased estimator, ĉ(u, v) inherits this property and is also
unbiased.

A straightforward approach, but one that suffers from a major drawback, is to
find an absolute ϵ-approximation, i.e,

|cvertex(u, v)− ĉvertex(u, v)| ≤ ϵ, for all u, v ∈ V.

By denormalizing, we obtain

|V | · |cvertex(u, v)− ĉvertex(u, v)| ≤ |V | · ϵ,

which, by Definition 2, is equivalent to

|c(u, v)− ĉ(u, v)| ≤ |V | · ϵ,

and therefore the error increases linearly with the size of the graph. To overcome this, we
use a relative (p, ϵ)-approximation (Definition 7). When the threshold η satisfies certain
conditions (e.g., is sufficiently small or appropriately chosen), we can derive the following
bound

|cvertex(u, v)− ĉvertex(u, v)| ≤ cvertex(u, v)ϵ,

and, by denormalizing it,

|V | · |cvertex(u, v)− ĉvertex(u, v)| ≤ |V | · cvertex(u, v)ϵ.

Again, by Definition 2, this is equivalent to

|c(u, v)− ĉ(u, v)| ≤ c(u, v)ϵ.

Notice now that the error is relative to c(u, v), instead of the graph size. An analogous
approach to the one described above can be used to denormalize cedge(u, v) and cwedge(u, v),
so the details are omitted.



19

We proceed to introduce the denormalized versions of Algorithms 1, 2, and
3. These algorithms differ in three ways: an additional input parameter η, a sample
size computed according to Theorem 2 (which uses η), and denormalized output values
(multiplied by |V |, |E|

2 or |W |). These modified algorithms are presented in Algorithms 5,
6, and 7.

Algorithm 5: CN(G, ε, δ, η) (vertex sampling)
input: Graph G = (V, E), accuracy ϵ, confidence 1− δ, threshold η
output : Estimates ĉ(u, v) for all pairs u, v ∈ V
∆← getMaximumDegree(G)
m←

⌈
b′

ϵ2η

(
⌊2 lg(∆)⌋ ln 1

η
+ ln 1

δ

)⌉
for i← 1 to m do

s← sampleVertex(G)
forall pairs ni, nj ∈ N(s) do

ĉvertex[ni, nj]← ĉvertex[ni, nj] + 1
m

return ĉ[u, v] = |V | · ĉvertex[u, v] for all pairs u, v ∈ V

Algorithm 6: CN(G, ε, δ, η) (edge sampling)
input: Graph G = (V, E), accuracy ϵ, confidence 1− δ, threshold η
output : Estimates ĉ(u, v) for all pairs u, v ∈ V
∆← getMaximumDegree(G)
m←

⌈
b′

ϵ2η

(
(⌊lg(∆)⌋+ 2) ln 1

η
+ ln 1

δ

)⌉
for i← 1 to m do
{u, v} ← sampleEdge(G)
for each u′ ∈ N(u) \ {v} do

ĉedge[u′, v]← ĉedge[u′, v] + 1
m

for each v′ ∈ N(v) \ {u} do
ĉedge[v′, u]← ĉedge[v′, u] + 1

m

return ĉ[u, v] = |E|
2 · ĉedge[u, v] for all pairs u, v ∈ V

Algorithm 7: CN(G, ε, δ, η) (wedge sampling)
input: Graph G = (V, E), accuracy ϵ, confidence 1− δ, threshold η
output : Estimates ĉ(u, v) for all pairs u, v ∈ V

m←
⌈

b′

ϵ2η

(
ln 1

η
+ ln 1

δ

)⌉
for i← 1 to m do
{u, w, v} ← sampleWedge(G)
ĉwedge[u, v]← ĉwedge[u, v] + 1

m
return ĉ[u, v] = |W | · ĉwedge[u, v] for all pairs u, v ∈ V

While the role of ϵ and δ on the quality of the output is well understood, the
impact of η is less evident. The selection of appropriate values for η is discussed in Section
5.

Theorems 15, 16, and 17 below summarize the results of the denormalization by
vertices, edges, and wedges respectively.



20

Theorem 15. Given a graph G = (V, E), parameters ϵ, δ and η, Algorithm 5 has running
time O(∆2 lg ∆ + |E|) and returns ĉ(u, v) s.t.

Pr (∀u, v ∈ V, |ĉ(u, v)− c(u, v)| ≤ ϵ max {c(u, v), |V |η}) ≥ 1− δ.

Theorem 16. Given a graph G = (V, E), parameters ϵ, δ and η, Algorithm 6 has running
time O(∆ lg ∆ + |E|) and returns ĉ(u, v) s.t.

Pr
(
∀u, v ∈ V, |ĉ(u, v)− c(u, v)| ≤ ϵ max

{
c(u, v), |E|

2 η
})
≥ 1− δ.

Theorem 17. Given a graph G = (V, E), parameters ϵ, δ and η, Algorithm 7 has running
time O(|E|) and returns ĉ(u, v) s.t.

Pr (∀u, v ∈ V, |ĉ(u, v)− c(u, v)| ≤ ϵ max {c(u, v), |W |η}) ≥ 1− δ.

Although the wedge sampling strategy has the lowest running time compared to
the other two variants, it also has the lowest accuracy. In Section 4.2), we discuss the
reason behind this behavior, as well as compare the algorithms both in terms of time and
accuracy.

4.2 RUNNING TIME VS ESTIMATION QUALITY TRADE-OFF

Observing only the time complexity of Algorithms 5, 6, and 7 (O(∆2 lg ∆+|E|), O(∆ lg ∆+
|E|), and O(|E|), respectively), one might be tempted to conclude that the wedge sampling
algorithm is always preferable. However, this conclusion overlooks the fact that the quality
of the estimates produced by these algorithms can vary significantly.

For each sample, Algorithm 5 updates the estimates for O(∆2) vertex pairs,
Algorithm 6 updates the estimates for O(∆) pairs, and Algorithm 7 updates estimates
for only a single pair. Compared to the other two algorithms, Algorithm 5 incorporates
“more information” per sample, potentially leading to greater accuracy in its estimates.
This suggests that the estimator of Algorithm 5 is more efficient than that of Algorithm 6,
which in turn is more efficient than the estimator of Algorithm 7. This notion is formalized
through the concept of relative efficiency between estimators (Wackerly et al., 2014).

Let θ̂ denote an estimator of θ. The relative efficiency e(θ̂1, θ̂2) of two unbiased
estimators θ̂1 and θ̂2 is a measure of how much more efficient θ̂1 is compared to θ̂2. If
e(θ̂1, θ̂2) > 1, then θ̂1 is considered more efficient than θ̂2, which implies that θ̂1 deviates
less from the true value than θ̂2. Formally, it is defined as

e(θ̂1, θ̂2) = Var(θ̂2)
Var(θ̂1)

.

Theorem 18 presents results concerning the relative efficiency of the estimators of
the previously presented algorithms.

Theorem 18. Let ĉvertex(u, v), ĉedge(u, v) and ĉwedge(u, v) be the estimates of c(u, v) ob-
tained, respectively, by Algorithms 5, 6, and 7. Then, for any pair of vertices u and
v,

(i) if |E| > 2|V |, then ĉvertex(u, v) is more efficient than ĉedge(u, v),



21

(ii) if |E| < 2|V |, then ĉedge(u, v) is more efficient than ĉvertex(u, v),

(iii) if |E| = 2|V |, then ĉvertex(u, v) and ĉedge(u, v) are equally efficient.

(iv) if |W | > |E| and |W | > |V |, then ĉwedge(u, v) is less efficient than ĉedge(u, v) and
ĉvertex(u, v).

Proof. Let Evertex(u, v), Eedge(u, v), and Ewedge(u, v) be the events defined in Sections 3.1.1,
3.2.1, and 3.3.1, respectively. Then, by Equations 3.1, 3.2, and 3.3:

ĉvertex(u, v) = |V |
m

m∑
j=1

1Evertex(u,v)(sj), ĉedge(u, v) = |E|2m

m∑
j=1

1Eedge(u,v)(sj),

ĉwedge(u, v) = |W |
m

m∑
j=1

1Ewedge(u,v)(sj)

The variances of ĉvertex(u, v), ĉedge(u, v), and ĉwedge(u, v) are given by

Var(ĉvertex(u, v)) = |V |
2

m2

m∑
j=1

Var(1Evertex(u,v)(sj))

= |V |
2

m2

m∑
j=1

cvertex(u, v)(1− cvertex(u, v))

= |V |
2

m2

m∑
j=1

c(u, v)(|V | − c(u, v))
|V |2

= c(u, v)(|V | − c(u, v))
m

.

Var(ĉedge(u, v)) = |E|
2

4m2

m∑
j=1

Var(1Eedge(sj))

= |E|
2

4m2

m∑
j=1

cedge(u, v)(1− cedge(u, v))

= |E|
2

4m2

m∑
j=1

2c(u, v)(|E| − 2c(u, v))
|E|2

= 2c(u, v)(|E| − 2c(u, v))
4m

=
c(u, v)

(
|E|
2 − c(u, v)

)
m

.



22

Var(ĉwedge(u, v)) = |W |
2

m2

m∑
j=1

Var(1Ewedge(u,v)(sj))

= |W |
2

m2

m∑
j=1

cwedge(u, v)(1− cwedge(u, v))

= |W |
2

m2

m∑
j=1

c(u, v)(|W | − c(u, v))
|W |2

= c(u, v)(|W | − c(u, v))
m

.

The relative efficiency of ĉvertex(u, v) and ĉedge(u, v) is then

e(ĉvertex(u, v), ĉedge(u, v)) = Var(ĉedge(u, v))
Var(ĉvertex(u, v)) =

c(u, v)
(

|E|
2 − c(u, v)

)
c(u, v)(|V | − c(u, v)) =

|E|
2 − c(u, v)
|V | − c(u, v) .

To proof (i), observe that if |E| > 2|V |, then |E|
2 − c(u, v) > |V | − c(u, v), which implies

that e(ĉvertex(u, v), ĉedge(u, v)) > 1. Therefore, ĉvertex(u, v) is more efficient than ĉedge(u, v),
regardless of the value of c(u, v). The proof of (ii) and (iii) follow in a similar manner.

To prove (iv), observe that if |W | > |E| and |W > |V |, we have that

e(ĉwedge(u, v), ĉedge(u, v)) = Var(ĉedge(u, v))
Var(ĉwedge(u, v)) =

|E|
2 − c(u, v)
|W | − c(u, v) < 1.

e(ĉwedge(u, v), ĉvertex(u, v)) = Var(ĉvertex(u, v))
Var(ĉwedge(u, v)) = |V | − c(u, v)

|W | − c(u, v) < 1.

These inequalities hold regardless of the value of c(u, v).

Except in cases of extreme sparsity (i.e., |E| < 2|V |), Theorem 18 implies that
Algorithm 5 generally provides superior estimates to Algorithm 6 in practical applications.
However, this improvement in accuracy comes at the cost of higher time complexity,
creating a trade-off that must be considered when choosing between the two algorithms.

Regarding Algorithm 7, |W | is generally larger than |V | and |E|. For an example,
consider a graph with ∆ = 1000. By Proposition 2, |W | is at least

(
1000

2

)
= 499500; and

by Proposition 1, |E| is at least 1000 · 1000+1−2
2 = 499500. Since the size of |W | grows

quadratically with ∆, it is reasonable to expect that |W | will be larger than |E| and |V |
in most practical applications, so the estimator of the wedge sampling algorithm is overall
less efficient than the other two.



23

5 EXPERIMENTAL EVALUATION

This section presents the results of our experimental evaluation. We implemented the
algorithms in Python 3.10, using the NetworkX library for graph manipulation. We
conducted the experiments on a machine with an AMD Ryzen 5700G CPU and 32GB of
RAM, running Windows 11.

To establish a baseline for comparison, we computed the exact CN for all pairs
using an adaptation of the current state-of-the-art algorithm by An et al. (An et al.,
2019), which runs in O(∆|E|). We maintain the iteration over all wedges, but instead
of forming a wedge starting from the endpoints, we start from the central vertex. This
minor modification bypasses an additional check done in the original algorithm to prevent
counting the same wedge twice. For example, if we construct the wedge u, v, w from the
endpoints, then there are two ways of forming this wedge: by starting from u, choosing v
in N(u) and then picking w from N(v); or by starting from w, choosing v in N(w) and
then picking u from N(v). Therefore, it is necessary to add a check to prevent counting the
same wedge twice. However, if instead, we construct u, v, w from the central vertex v, then
there is only one way of forming this wedge: by picking u and w from N(v). Algorithm 8
presents the method used to compute the exact CN for all pairs.

Algorithm 8: ExactCN(G)
input : Graph G = (V, E)
output : c(u, v) for all pairs of vertices u, v ∈ V
forall v ∈ V do

forall pairs ni, nj ∈ N(v) do
c[ni, nj]← c[ni, nj] + 1

return c[u, v] for all pairs of vertices u, v ∈ V

5.1 NORMALIZED CN ESTIMATION

This section evaluates Algorithms 1, 2, and 3 which approximate normalized CN. We used
real-world graphs from the datasets SNAP (Leskovec and Krevl, 2014) and KONECT
(Kunegis, 2013). Table 5.1 summarizes their key characteristics. Following the recommen-
dation of Löffler and Phillips (Löffler and Phillips, 2009), we adopted b = 1/2.

Graph Nodes Edges Wedges Max. degree
Gowalla 196,591 950,327 290,400,040 14,730

Flickr links 1,715,254 15,551,250 14,660,775,060 27,224
Catster/dogster households 324,936 2,643,012 3,632,371,922 37,346

Youtube friendships 1,134,890 2,987,624 1,474,482,560 28,754
Hyves 1,402,673 2,777,419 1,447,128,030 31,883

Flixster 2,523,386 7,918,801 1,735,571,393 1,474

Table 5.1: Dataset details for real-world graphs.

In Figure 5.1, we report the running time of the algorithms on every graph for
ϵ = 0.05. The results were averaged ten times. It was not possible to directly run Algorithm



24

8 for the dataset since the output exceeded the system memory size. To remedy this
problem, we saved the results of all pairs in the same key c[0, 0], instead of writing in
the appropriate key c[ni, nj]. This modification produces a conservative estimate for the
true running time of the exact algorithm. In our tests with smaller graphs (where it was
possible to compute the running time directly), we observed that the estimate was 2 to 10
times lower than the actual value.

Gow
all

a

Flix
ste

r

Flick
r lin

ks

Cats
ter

/d
ogs

ter
ho

use
ho

lds

You
tub

e frie
nd

shi
ps

Hyv
es

1 sec

1 min

1 hour

T
im

e

EdgeNormalizedCN
WedgeNormalizedCN
VertexNormalizedCN
ExactCN (estimated)

Figure 5.1: Comparison of running times for different algorithms, on all graphs in our dataset.

From the figure, we see that the probabilistic algorithms are much faster than
the exact version, especially considering that our estimate for the ExactCN is at least 2
times lower than the actual value. Overall, the edge normalization algorithm is the fastest,
except for graphs Catster/dogster households and Hyves. From the theoretical results, the
wedge strategy should have been the fastest. This discrepancy is further examined in the
next figures.

Figures 5.2 to 5.7 show the trade-off between accuracy and running time for the
probabilistic algorithms. Accuracy was evaluated using the average of |c•(u, v)− ĉ•(u, v)|
over all non-empty intersections (• is “vertex”, “edge” or “wedge”). Experiments were re-
peated ten times, and average results are reported for various ϵ in [0.02, 0.04, 0.06, 0.08, 0.1]
when possible. In some cases, due to lack of memory size, it was not possible to compute
the results for ϵ = 0.02 and/or ϵ = 0.04.

From Figures 5.2 to 5.7, it is possible to see that the vertex strategy is the most
accurate since its plot stays in the lower part of the figures. However, as expected, this
results in a higher running time, as reflected by the stretch of its plot to the right. The edge
normalization strategy has lower accuracy and running time, so its plot has a tendency to
stay in the center or with a shift to the left. The behavior of the wedge strategy, however,
is far from the theoretical prediction. According to theory, its plot should have been



25

0 0.5 1 1.5 2 2.5 3

10−4

10−3

Running Time (seconds)

Er
ro

r

Error vs. Running Time

WedgeNormalizedCN
EdgeNormalizedCN

VertexNormalizedCN

Figure 5.2: Error vs. Running Time comparison between the probabilistic algorithms for the Gowalla
graph.

0 1 2 3 4 5 6 7

10−4

10−3

10−2

Running Time (seconds)

Er
ro

r

Error vs. Running Time

WedgeNormalizedCN
EdgeNormalizedCN

VertexNormalizedCN

Figure 5.3: Error vs. Running Time comparison between the probabilistic algorithms for the Youtube
friendships graph.



26

0 2 4 6 8 10 12 14 16 18

10−4

10−3

10−2

Running Time (seconds)

Er
ro

r

Error vs. Running Time

WedgeNormalizedCN
EdgeNormalizedCN

VertexNormalizedCN

Figure 5.4: Error vs. Running Time comparison between the probabilistic algorithms for the Flixster
graph.

0 5 10 15 20 25 30 35 40

10−4

10−3

Running Time (seconds)

Er
ro

r

Error vs. Running Time

WedgeNormalizedCN
EdgeNormalizedCN

VertexNormalizedCN

Figure 5.5: Error vs. Running Time comparison between the probabilistic algorithms for the Catster/dog-
ster households graph.



27

0 5 10 15 20 25

10−3.5

10−3

10−2.5

Running Time (seconds)

Er
ro

r

Error vs. Running Time

WedgeNormalizedCN
EdgeNormalizedCN

VertexNormalizedCN

Figure 5.6: Error vs. Running Time comparison between the probabilistic algorithms for the Flickr links
graph.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10−3.6

10−3.4

10−3.2

10−3

10−2.8

10−2.6

10−2.4

10−2.2

Running Time (seconds)

Er
ro

r

Error vs. Running Time

WedgeNormalizedCN
EdgeNormalizedCN

VertexNormalizedCN

Figure 5.7: Error vs. Running Time comparison between the probabilistic algorithms for the Hyves graph.



28

positioned in the top left corner of the figures, as it has the least accuracy and the lowest
running time of the three strategies.

The strange behavior of the wedge strategy can be explained by analyzing the
preprocessing stage of the algorithm, specifically the steps taken by Algorithm 4. To
construct the Alias table, which takes O(|E|) time, it is necessary to know |W |, which also
takes O(|E|) time. Computing |W |, in turn, requires knowing the degrees of all vertices, a
process that again takes O(|E|). Therefore, it is necessary to iterate over all the edges
of the graph three times. The other two strategies iterate only once over the edges - to
compute the maximum degree of the graph. The main loop of the other two strategies
is not slow enough to allow the wedge algorithm to take the lead. We confirmed this
explanation when we performed code profiling on the wedge algorithm. The preprocessing
time corresponded to more than 80% of the entire running time of the algorithm. This is
also reflected in the figures. Since the preprocessing phase is not affected by ϵ and it is
primarily responsible for the running time, it is not a surprise that the wedge algorithm
has an almost entirely vertical shape.

Finally, to evaluate scalability, we generate ten Barabási-Albert graphs (Albert
and Barabási, 2002). These are synthetic graphs generated through an incremental process
where new nodes are added and connected to existing nodes with a probability proportional
to the existing nodes’ degrees (preferential attachment). They are widely used models
for real-world networks due to their scale-free degree distribution. We used a number of
vertices ranging from 125,000 to 2,000,000. We set δ = 0.1 and ϵ = 0.05. Average running
times were computed across ten runs. Figure 5.8 and Figure 5.9 present the scalability
results for Barabási-Albert graphs with 10 and 3 edges per new node, respectively.

The results from the figures support the previous analysis: as expected, the
edge normalization algorithm is faster than the vertex normalization, and the wedge
normalization algorithm took the highest time due to the preprocessing stage.

For the exact CN values, even for the smallest graph with n = 125, 000 nodes,
computation took 46 seconds with 10 edges per new node and 4 seconds with 3 edges per
new node. For n = 250, 000, the difference was even more significant: it took 111 seconds
with 10 edges per new node and 10 seconds with 3 edges per new node. For n greater
than 250, 000, it was not possible to compute the exact CN for graphs with 10 edges per
new node, as the results exceeded memory size. For n = 1, 000, 000, computing the exact
CN for a Barabási-Albert graph with 3 edges per new node took 49 seconds, which is
significantly higher than all other values in Figure 5.9.

5.2 CN ESTIMATION

Vertex Sampling (Algorithm 5) Edge Sampling (Algorithm 6)
p Exact Alg. Time (s) Mean Time (s) Std. Dev. Time Mean Rate (%) Std. Dev. Rate Mean Time (s) Std. Dev. Time Mean Rate (%) Std. Dev. Rate

0.1 1.379 0.745 0.041 18.33% 0.005 2.814 0.123 30.73% 0.001
0.3 10.446 7.112 0.089 54.58% 0.010 9.135 0.141 52.39% 0.004
0.5 25.630 18.640 0.662 85.35% 0.008 16.085 1.113 66.9% 0.005
0.7 47.831 30.809 0.322 98.79% 0.003 21.215 0.207 74.86% 0.007
0.9 72.179 41.304 0.386 99.99% 0.000 26.873 0.434 80.77% 0.010

Table 5.2: Comparison of vertex and edge strategies for G(n, p) graphs as a function of edges generation
probabilities η.

This section evaluates Algorithms 5 and 6, which offer relative estimates for
CN. We set ϵ = 0.1, δ = 0.1 and threshold η = 0.7 and η = 0.04 for the vertex and
edge strategies, respectively, to balance runtime and accuracy. In the absence of specific



29

0 0.5 1 1.5 2
·106

0

10

20

30

40

Number of Nodes (millions)

T
im

e
(s

ec
on

ds
)

Performance Comparison of Counting Common Neighbors

WedgeNormalizedCN
EdgeNormalizedCN

VertexNormalizedCN

Figure 5.8: Running time of normalized algorithms on Barabási–Albert graphs as a function of graph size,
with 10 edges per new node.

0 0.5 1 1.5 2
·106

0

2

4

6

8

10

12

Number of Nodes (millions)

T
im

e
(s

ec
on

ds
)

Performance Comparison of Counting Common Neighbors

WedgeNormalizedCN
EdgeNormalizedCN

VertexNormalizedCN

Figure 5.9: Running time of normalized algorithms on Barabási–Albert graphs as a function of graph size,
with 3 edges per new node.

Vertex Sampling (Algorithm 5) Edge Sampling (Algorithm 6)
n Exact Alg. Time (s) Mean Time (s) Std. Dev. Time Mean Rate (%) Std. Dev. Rate Mean Time (s) Std. Dev. Time Mean Rate (%) Std. Dev. Rate

500 2.024 2.753 0.094 83.09% 0.009 4.444 0.077 81.15% 0.009
1000 23.104 18.115 0.267 84.85% 0.009 16.229 0.160 66.8% 0.007
2000 257.811 87.861 0.745 86.79% 0.005 41.976 0.167 52.44% 0.003
4000 2396.315 409.536 2.306 88.07% 0.007 97.159 0.357 40.01% 0.002

Table 5.3: Comparison of vertex and edge strategies for G(n, p) graphs as a function of the number of
vertices n.



30

recommendations, we set b′ = 1/2, as we observed that this value is very satisfactory
in practice. We assess the accuracy of our estimates by calculating the average rate of
successful approximations. This rate is determined by dividing the number of non-empty
neighborhood intersections that satisfy |c(u, v)− ĉ(u, v)| ≤ ϵc(u, v) by the total number of
non-empty intersections. We also compared the runtime of our algorithms to that of the
exact algorithm. Each experiment was performed ten times, and we took the average and
standard deviation of the results.

Preliminary experiments on real-world graphs revealed either high running times
or low rates of successful approximations for the algorithms, which we attribute primarily
to the sparsity of the graphs. To investigate the impact of graph density, we generated
synthetic graphs using the G(n, p) model (Erdos and Renyi, 1959), a type of random graph
where each pair of n vertices is connected by an edge with an independent probability p.
We varied p to control the graph density and n to explore the effect of graph size.

Table 5.2 shows results for G(n, p) graphs with n = 1000 and varying p. Denser
graphs led to higher success rate for approximations (reported as “Mean Rate” and “Std.
Dev. Rate” in the tables), and both our vertex and edge sampling algorithms outperformed
the runtime of the exact algorithm. Table 5.3 shows results for G(n, p) graphs with p = 0.5
and varying n. While faster, the edge strategy was less accurate than the vertex strategy.
Notably, the accuracy of the vertex strategy improved with increasing n, whereas the
accuracy of the edge strategy declined, suggesting better scalability for the vertex-based
approach.

5.3 INFLUENCE OF THE THRESHOLD η

In this section, we study the influence of the threshold η in Algorithms 5 and 6. Theorem
2 establishes a relationship between the threshold η and sample size m. While a small η
allows the approximation guarantees to be satisfied more often, it also increases sample
size, impacting runtime. This trade-off means there is no single optimal η. However, a
conceptual lower bound exists: when η is so small that the sample size exceeds the number
of vertices or edges, performance is equivalent or worse than that of the exact solution.
We refer to this lower bound as the Minimum threshold η. It can be calculated by setting
m = |V | or m = |E| (depending on the algorithm used) in the equation of Theorem 2 and
solving for η.

Note that the Minimum threshold η is determined by a formula that depends on
the VC dimension, which, in turn, is a function of the maximum degree – a value that
varies in random graphs. Consequently, we experimentally investigate the typical value
of the Minimum threshold η. We generate G(n, p) graphs, varying both n and p, and
calculate the corresponding Minimum threshold η for each, using ϵ = 0.1 and δ = 0.1.
Figures 5.10(a) and 5.10(b) illustrate the Minimum threshold η for Algorithms 5 and 6,
respectively. The results are averaged over ten runs of the algorithms.

For the vertex strategy, the Minimum threshold η decreases with lower edge
generation probabilities and larger graph sizes, allowing for smaller η values in sparser
and larger graphs. For graphs with over 1000 vertices and an edge probability below 0.9,
any η ≥ 0.6 ensures an acceptable sample size. This justifies our choice of η = 0.7 for
Algorithm 5, as it balances accuracy and runtime (see Tables 5.2 and 5.3). For the edge
strategy, the Minimum threshold η exhibits a distinct behavior: it decreases as the edge
generation probability increases, meaning denser, larger graphs allow for smaller η values



31

to improve accuracy. This explains our selection of η = 0.04 in our experiments with
Algorithm 6.

1000 2000 3000 4000 5000

0.05

0.1

0.3

0.5

0.7

0.9

0.514 0.388 0.322 0.273 0.247

0.543 0.401 0.336 0.291 0.263

0.568 0.434 0.361 0.316 0.286

0.59 0.453 0.378 0.332 0.293

0.6 0.462 0.387 0.339 0.3

0.6 0.462 0.387 0.339 0.307

Number of vertices

Ed
ge

ge
ne

ra
tio

n
pr

ob
ab

ili
ty

0

0.2

0.4

0.6

M
in

im
um

th
re

sh
ol

d
η

(a) Minimum threshold η for Alg. 5 (Vertex strategy).

0.051 0.019 0.010 0.006 0.005

0.033 0.011 0.006 0.004 0.003

0.015 0.005 0.003 0.002 0.001

0.010 0.004 0.002 0.001 0.001

0.008 0.003 0.001 0.001 0.001

0.006 0.002 0.001 0.001 0.000

1000 2000 3000 4000 5000

0.05

0.1

0.3

0.5

0.7

0.9

Number of vertices

Ed
ge

ge
ne

ra
tio

n
pr

ob
ab

ili
ty

0

2

4

·10−2

M
in

im
um

th
re

sh
ol

d
η

(b) Minimum threshold η for Alg. 6 (Edge strategy).

Figure 5.10: Minimum threshold η for vertex and edge strategies.



32

6 CONCLUSION

This paper introduces sampling-based algorithms for efficiently estimating CN for all
vertex pairs in graphs. By leveraging VC dimension-based sample complexity analysis, we
have designed algorithms with significantly improved performance compared to traditional
methods. We present three distinct sampling strategies: vertex sampling, edge sampling
and wedge sampling. Vertex sampling has a runtime of O(∆2 lg ∆ + |E|) and offers higher
estimator accuracy, while edge sampling runs faster at O(∆ lg ∆+|E|), and wedge sampling
runs even faster at O(|E|), where ∆ is the maximum degree of the graph. This creates a
trade-off between estimator quality and runtime.

Our experimental evaluation focused on denormalized and normalized versions
of the algorithms, as well as the influence of the threshold η. The proposed strategies
significantly outperformed exact methods in speed while exceeding quality guarantees.
Interestingly, initial results suggest that denormalized strategies in real-world graphs
often exhibit suboptimal performance compared to their normalized counterparts. Since
many established metrics are based on normalized version of the metric, and our results
confirm their superior performance, normalized versions may be of greater interest than
denormalized ones.

Future research could investigate the use of adaptive sampling and explore alter-
native range spaces beyond vertex and edge sampling, provided that efficient sampling of
the structures of interest is feasible.



33

REFERENCES

Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev.
Mod. Phys., 74:47–97.

An, X., Gabert, K., Fox, J., Green, O., and Bader, D. A. (2019). Skip the intersection:
Quickly counting common neighbors on shared-memory systems. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–7.

Besta, M., Kanakagiri, R., Kwasniewski, G., Ausavarungnirun, R., Beránek, J., Kanel-
lopoulos, K., Janda, K., Vonarburg-Shmaria, Z., Gianinazzi, L., Stefan, I., Luna, J. G.,
Golinowski, J., Copik, M., Kapp-Schwoerer, L., Di Girolamo, S., Blach, N., Konieczny,
M., Mutlu, O., and Hoefler, T. (2021). Sisa: Set-centric instruction set architecture for
graph mining on processing-in-memory systems. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, page 282–297, New York, NY, USA.
Association for Computing Machinery.

Besta, M., Miglioli, C., Labini, P. S., Tětek, J., Iff, P., Kanakagiri, R., Ashkboos, S.,
Janda, K., Podstawski, M., Kwaśniewski, G., Gleinig, N., Vella, F., Mutlu, O., and
Hoefler, T. (2022). Probgraph: high-performance and high-accuracy graph mining with
probabilistic set representations. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, Dallas, Texas. IEEE Press.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426.

Cousins, C., Wohlgemuth, C., and Riondato, M. (2023). Bavarian: Betweenness centrality
approximation with variance-aware rademacher averages. ACM Trans. Knowl. Discov.
Data, 17(6).

de Lima, A. M., da Silva, M. V., and Vignatti, A. L. (2022). Percolation centrality via
rademacher complexity. Discrete Applied Mathematics, 323:201–216.

de Lima, A. M., da Silva, M. V. G., and Vignatti, A. L. (2020). Estimating the percolation
centrality of large networks through pseudo-dimension theory. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1839–1847, New York, NY, USA. Association for Computing Machinery.

de Lima, A. M., da Silva, M. V. G., and Vignatti, A. L. (2022). Estimating the clustering
coefficient using sample complexity analysis. In LATIN 2022: Theoretical Informatics,
pages 328–341, Berlin, Heidelberg. Springer-Verlag.

Easley, D. and Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning about a
Highly Connected World. Cambridge University Press, USA.

Erdos, P. and Renyi, A. (1959). On random graphs i. Publ. math. debrecen, 6(290-297):18.

Har-Peled, S. and Sharir, M. (2011). Relative (p, ϵ)-approximations in geometry. Discrete
Comput. Geom., 45(3):462–496.



34

Kunegis, J. (2013). KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on
World Wide Web Companion, pages 1343–1350.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data.

Li, Y., Long, P. M., and Srinivasan, A. (2001). Improved bounds on the sample complexity
of learning. Journal of Computer and System Sciences, 62(3):516 – 527.

Löffler, M. and Phillips, J. M. (2009). Shape fitting on point sets with probability
distributions. In Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen,
Denmark, September 7-9, 2009. Proceedings, pages 313–324. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Menczer, F., Fortunato, S., and Davis, C. (2020). A First Course in Network Science.
Cambridge University Press, UK.

Mitzenmacher, M. and Upfal, E. (2017). Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University Press,
UK, 2nd edition.

Newman, M. (2010). Networks: An Introduction. Oxford University Press, Inc., UK.

Pellegrina, L. and Vandin, F. (2023). Silvan: Estimating betweenness centralities with
progressive sampling and non-uniform rademacher bounds. ACM Trans. Knowl. Discov.
Data, 18(3).

Riondato, M. and Kornaropoulos, E. M. (2014). Fast approximation of betweenness
centrality through sampling. In Proceedings of the 7th ACM International Conference
on Web Search and Data Mining, page 413–422, New York, NY, USA. Association for
Computing Machinery.

Riondato, M. and Kornaropoulos, E. M. (2016). Fast approximation of betweenness
centrality through sampling. Data Min. Knowl. Discov., 30(2):438–475.

Riondato, M. and Upfal, E. (2018). Abra: Approximating betweenness centrality in static
and dynamic graphs with rademacher averages. ACM Trans. Knowl. Discov. Data,
12(5):61:1–61:38.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, UK.

Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability & Its Applications,
16(2):264–280.

Wackerly, D., Mendenhall, W., and Scheaffer, R. L. (2014). Mathematical Statistics with
Applications. Cengage Learning, USA.

Walker, A. (1974). New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10:127–128.

http://snap.stanford.edu/data

	Introduction
	Our Results
	Related Work

	Preliminaries
	Graph Theory
	VC Dimension
	Sample Complexity
	Shatter Potential

	Normalized Estimatives
	Estimation Via Vertex Normalization
	Range Space and VC Dimension Results
	Algorithm

	Estimation Via Edge Normalization
	Range Space and VC Dimension Results
	Algorithm

	Estimation Via Wedge Normalization
	Range Space and VC Dimension Results
	Algorithm
	Wedge Sampling


	Common Neighbors Estimation
	Denormalization Strategy
	Running Time vs Estimation Quality Trade-Off

	Experimental Evaluation
	Normalized CN Estimation
	CN Estimation
	Influence of the Threshold p

	Conclusion
	REFERENCES

